A characterization of rings with Krull dimension

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Gröbner bases and Krull dimension of residue class rings of polynomial rings over integral domains

Given an ideal a in A[x1, . . . , xn] where A is a Noetherian integral domain, we propose an approach to compute the Krull dimension of A[x1, . . . , xn]/a, when the residue class ring is a free A-module. When A is a field, the Krull dimension of A[x1, . . . , xn]/a has several equivalent algorithmic definitions by which it can be computed. But this is not true in the case of arbitrary Noetheri...

متن کامل

Upper bounds for noetherian dimension of all injective modules with Krull dimension

‎In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings‎. ‎In particular‎, ‎we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.

متن کامل

Characterizations of Krull Rings with Zero Divisors

We show that a ring is a Krull ring if and only if every nonzero regular prime ideal contains a t-invertible prime ideal if and only if every proper regular principal ideal is quasi-equal to a product of prime ideals.

متن کامل

Krull Dimensions of Rings of Holomorphic Functions

We prove that the Krull dimension of the ring of holomorphic functions of a connected complex manifold is at least the cardinality of continuum if and only if it is > 0. Let R be a commutative ring. Recall that the Krull dimension dim(R) of R is the supremum of cardinalities lengths of chains of distinct proper prime ideals in R. Our main result is: Theorem 1. Let M be a connected complex manif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1990

ISSN: 0021-8693

DOI: 10.1016/0021-8693(90)90254-l